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Abstract

This paper examines how wildfire smoke exposure affects road safety in Alberta. Combin-

ing satellite-based smoke plume data with municipality-day accident records from 2016 to

2022, I find that accident incidents rise on low- and medium-smoke days but fall sharply on

heavy-smoke days. Traffic volume data show that vehicle counts remain unchanged when

smoke is light yet decline substantially under heavy smoke, indicating that people avoid

driving only when conditions are visibly severe. These patterns suggest that on low-smoke

days, drivers continue their usual travel but may experience reduced cognitive performance,

leading to more accidents even though they do not perceive a risk. The results highlight an

overlooked behavioral cost of wildfire smoke exposure and underscore the need for public aware-

ness that smoke can impair cognition and driving safety even when it is not readily perceptible.
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1 Introduction

Wildfires have intensified in scale and impact over the past two decades, with 2021, 2024, and

2023 ranking as the third and worst years globally, respectively1. These events have more

than doubled the area of tree cover burned worldwide, extending the duration and intensity

of smoke plumes compared to two decades ago (Potapov et al., 2025). Wildfires emit a broad

spectrum of pollutants, including greenhouse gases such as carbon dioxide (CO2), methane

(CH4), and nitrous oxide (N2O). They also release photochemically reactive compounds —

carbon monoxide (CO), nonmethane volatile organic compounds (NMVOC), and nitrogen

oxides (NOx) — along with fine and coarse particulate matter (PM) (Urbanski et al., 2008).

In 2023, Canadian wildfires emitted approximately 647 TgC of carbon, an amount comparable

to the annual fossil fuel emissions of major economies; only India, China, and the United

States released more carbon that year (Byrne et al., 2024). On May 16, 2023, the PM2.5

concentration in southeast Calgary reached 558 µg/m3, nearly 93% of Bangladesh’s peak

level that year.2 Toxicological evidence further indicates that particulate matter from wildfire

smoke is more harmful than equivalent doses of urban or industrial pollution (Aguilera et al.,

2021).

Wildfire smoke thus represents an increasingly important, widespread, and severe form

of air pollution with direct implications for human health, productivity, and behavior. A

growing literature in economics has examined how air pollution influences a wide range of

outcomes: labor productivity and labor supply (Hanna and Oliva, 2015; Zivin and Neidell,

2012; Borgschulte et al., 2022; Hoffmann and Rud, 2024), cognitive performance and decision

quality (Ebenstein et al., 2016; Chang et al., 2019), health and mortality (Dockery and

Pope, 1994; Miller et al., 2024; Grant and Runkle, 2022), and even social behaviors such as

aggression and crime (Herrnstadt et al., 2016; Bondy et al., 2020; Burkhardt et al., 2019;

Singh and Visaria, 2021). Yet, the behavioral and safety consequences of wildfire smoke —

1See https://www.wri.org/insights/global-trends-forest-fires.
2Bangladesh was the most polluted country in 2023.
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especially in routine activities like driving — remain largely unexplored. This paper examines

how exposure to wildfire smoke influences road safety, focusing on the incidence of traffic

accidents in Alberta, Canada. I combine satellite-based data on smoke plumes with detailed

municipality-day accident records from 2016 to 2022 to estimate the impact of smoke exposure

on traffic accidents.

The empirical strategy exploits within-municipality, within-month day-to-day variation

in the intensity of smoke exposure. Because wildfire smoke can travel long distances and

fluctuate sharply over space and time, its arrival in a given area is plausibly unrelated

to local driving conditions or behaviors. I merge satellite-based smoke plume data from

NOAA’s Hazard Mapping System with administrative accident records from the Government

of Alberta and control for local weather, seasonality, and time-varying municipality-specific

factors using high-dimensional fixed-effects. This design isolates the short-run effect of smoke

exposure on accident rates while minimizing confounding from correlated local shocks.

The analysis reveals a striking nonlinear relationship. Accident incidents increase on low-

and medium-smoke days but fall sharply on high-smoke days. Complementary traffic flow

data from the city of Calgary show that vehicle volumes remain unchanged when smoke is

light yet decline substantially under heavy smoke. These patterns suggest that drivers avoid

travel only when smoke is severe. On days with lower levels of smoke — when perceived

risk remain largely unaffected — drivers continue normal routines but may experience subtle

cognitive impairments that elevate accident risk. Consistent with this interpretation, the

effects are concentrated in urban areas, on weekdays, and in the pre-COVID period — settings

where travel is less easily avoided. The findings indicate that wildfire smoke can affect safety

even when individuals do not consciously perceive the hazard.

This paper contributes to several strands of literature. First, it adds to the growing body

of work examining how air pollution affects human behavior and decision-making. Previous

studies have shown that pollution exposure reduces cognitive performance (Ebenstein et al.,

2016; Chang et al., 2019), worker productivity (Hanna and Oliva, 2015; Zivin and Neidell,
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2012; Borgschulte et al., 2022), and health (Miller et al., 2024). This paper links those

cognitive and productivity effects to tangible safety outcomes that carry social and economic

costs, showing that impaired cognition can manifest in increased accident risk. Second, it

contributes to the literature on air pollution and road safety. Prior studies have documented

that pollution can influence accident frequency and severity, though findings are mixed: some

report increases in the number of crashes (Sager, 2019; Wang et al., 2023; Shi et al., 2022;

Baryshnikova and Wesselbaum, 2023; Burton and Roach, 2023), while others observe declines

in severe accidents, consistent with greater caution or avoidance (Shr et al., 2023; Deng et al.,

2024). By distinguishing between low- and high-smoke days, this paper helps reconcile these

divergent results — showing that when pollution is salient, behavioral avoidance dominates,

whereas when it is subtle, cognitive impairment drives more accidents.

Third, the study contributes to the emerging economics literature on wildfire smoke as a

unique form of pollution. Recent work has examined its effects on health (Miller et al., 2024;

Grant and Runkle, 2022), labor market outcomes (Borgschulte et al., 2022), and productivity

(Cvijanovic et al., 2024), as well as on school performance and cognitive outcomes (Wen and

Burke, 2022). Wildfires generate short-lived yet intense exposure episodes that are spatially

widespread and increasingly frequent. They also differ chemically from urban pollution,

with particulate matter that is more toxic and cognitively disruptive. By documenting the

behavioral and safety implications of such exposure, this paper highlights an underrecognized

welfare cost of wildfire smoke — one that operates through impaired cognition and reduced

public safety rather than through health or labor market channels. The results also shed light

on the limits of behavioral adaptation to environmental risks that are not readily perceived,

underscoring the importance of risk communication and public awareness in mitigating the

social costs of pollution exposure.

Finally, the results have implications for both policy and public awareness. Because even

light smoke can increase accident risk without being readily perceived, public advisories might

usefully emphasize that smoke can impair cognition and decision-making at lower levels of
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exposure than most people realize. Encouraging work-from-home arrangements and travel

reduction during smoky periods could improve both health and safety outcomes.

The remainder of the paper proceeds as follows. Section 2 describes the data sources and

variable construction. Section 3 presents a conceptual framework linking smoke exposure,

cognition, and avoidance behavior. Section 4 outlines the empirical identification strategy.

Section 5 reports the main results and heterogeneity analyses, and Section 6 explores

mechanisms. Section 7 concludes.

2 Data

This study combines three primary datasets to examine the relationship between wildfire

smoke and road accidents in Alberta. The first is the universe of police-reported traffic

accidents from 2016 to 2022, obtained from the Government of Alberta. These administrative

records provide detailed information on each incident, including the date, location, severity

(fatal, injury, property damage), number of vehicles involved, and driver demographics. I

aggregate these records to the municipality–day level to construct total daily accident counts

as well as disaggregated counts by severity.

The second dataset measures wildfire smoke exposure. I use satellite-based data from

NOAA’s Hazard Mapping System (HMS), which detects and classifies visible smoke plumes

each day across North America into light, medium, and heavy density categories. Smoke

polygons are merged to Alberta’s municipal boundaries using spatial shapefiles, producing

municipality–day indicators for smoke presence and intensity. To validate this measure and

control for other air quality factors, I supplement the HMS data with hourly ambient air

pollution readings from Environment and Climate Change Canada (ECCC), including PM2.5,

temperature, precipitation, and visibility. Hourly observations are averaged to the daily

level, and I compute inverse distance-weighted averages from monitoring stations within 100

kilometers of each municipality centroid following Borgschulte et al. (2022).
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Finally, to assess avoidance behavior, I use camera-based traffic counts from the City of

Calgary (2022 - 2024). These daily traffic volumes, aggregated across major intersections,

serve as a proxy for the number of vehicles on the road and allow me to test whether heavy

smoke discourages travel.

All datasets are merged at the municipality–day level using consistent spatial identifiers

and restricted to the wildfire season (May - October), when smoke exposure is most frequent.

The resulting dataset contains information on road accidents, smoke plume coverage, ambient

air pollution, and weather for 2016 - 2022, supplemented by traffic volume data for Calgary.

Table 1 reports summary statistics.

Table 1: Summary Statistics

Variable Obs Mean Std. Dev. Min Max

Accidents 413,448 2.187 16.710 0 940
Smoke (any) 413,448 0.319 0.466 0 1
Smoke (light) 413,448 0.254 0.435 0 1
Smoke (medium) 413,448 0.009 0.092 0 1
Smoke (heavy) 413,448 0.056 0.230 0 1
Smoke coverage (%) 413,448 30.676 45.776 0 100
PM2.5 (µg/m3) 387,502 7.579 11.686 0 1102.489
Temperature (°C) 413,300 12.481 6.240 -16.994 31.542
Precipitation (mm) 413,448 1.171 4.996 0 660.624
Visibility (km) 359,209 23.079 7.913 0.365 57.621

Notes: Observations are at the municipality–day level for May–October,
2016–2022.

3 Conceptual Framework

Wildfire smoke can affect accident counts through two competing mechanisms: a direct effect

on driver cognition and an indirect effect through changes in driving behavior. Let W denote

smoke exposure, C cognitive performance, and N the number of vehicles on the road. The

probability that a representative driver reaches home safely is Φ(C(W,Z), N(W,Z)), where

Z includes weather and other controls. The total number of accidents can be written as
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A = (1− Φ)N(W,Z). Differentiating with respect to W yields:

dA

dW
= −∂Φ

∂C

∂C

∂W
N(W,Z)︸ ︷︷ ︸

Cognitive impairment (direct effect)

+
[
− ∂Φ

∂N

∂N

∂W
N(W,Z) + (1− Φ)

dN(W,Z)

dW

]
︸ ︷︷ ︸

Avoidance behavior (indirect effect)

.

If smoke exposure reduces cognitive performance ( ∂C
∂W

< 0) and discourages travel ( ∂N
∂W

< 0),

the first term increases accidents while the second reduces them. The net effect can thus

be positive or negative depending on which effect dominates. This framework motivates the

empirical design below, which estimates reduced-form responses to smoke exposure and tests

for nonlinearity across smoke intensity bins.

4 Empirical Strategy

Consistent with the conceptual framework, the empirical objective is to estimate how wildfire

smoke exposure (W ) affects the number of road accidents (A) at the municipality–day level,

controlling for weather and time-varying local factors. Specifically, I estimate the semi-

elasticity of accident counts with respect to smoke exposure, leveraging day-to-day variation

in smoke intensity within each municipality and month, while controlling for year fixed effects.

Because wildfire smoke can drift long distances and fluctuate sharply over space and time, its

daily presence in a municipality within a given month is plausibly exogenous to local driving

conditions.

Formally, I estimate the following equation:

Accidentsidmy = exp (α + β1 Smokeidmy + γ′Xidmy + λim + δiy) ϵidmy, (1)

where Accidentsidmy is the number of police-reported traffic accidents in municipality i on

day d of month m and year y. Smokeidmy is the main variable of interest, indicating whether

a municipality is covered by wildfire smoke on a given day.3 Xidmy is a vector of weather

3A municipality is considered covered by smoke if more than 50% of its land area lies within a smoke
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controls including daily temperature, precipitation, and visibility. λim are municipality-by-

month fixed effects that capture time-invariant seasonal driving patterns specific to each

municipality (for example, differences between summer and fall driving habits), while δiy

are municipality-by-year fixed effects that control for annual local shocks such as changes in

population, infrastructure, or enforcement intensity. The idiosyncratic error term ϵidmy is

assumed to have mean zero conditional on the included covariates and fixed effects.

The coefficient of interest, β1, measures the semi-elasticity of accident counts with respect

to smoke exposure. It can be interpreted as the percentage change in the expected number of

accidents when a municipality is covered by smoke compared to when it is not, holding other

factors constant. Mathematically, the marginal effect of smoke on expected accidents is:

∂E[Accidentsidmy]

∂Smokeidmy

= β1 · E[Accidentsidmy], (2)

so (exp(β1)− 1)× 100 gives the percentage change in expected accident counts associated

with smoke coverage.

The identification strategy exploits daily variation in smoke exposure that is orthogonal

to local determinants of road safety. Wildfire smoke originates far from most municipalities in

Alberta and is transported by prevailing winds, creating spatially and temporally idiosyncratic

variation in pollution intensity. This design mitigates standard endogeneity concerns that

arise when pollution is locally generated, for example, by traffic congestion or industrial

activity, which could correlate with accident risk. Because wildfire smoke dispersion depends

primarily on meteorological factors, and not on local driving behavior, its short-run arrival in

a given area is plausibly exogenous to traffic conditions.4

Nonetheless, residual confounding could arise if smoke exposure coincides with unob-

served factors that also affect accident risk (e.g., changes in sunlight or temperature). I

therefore include comprehensive weather controls and absorb municipality-by-month and

plume polygon, based on NOAA HMS data.
4Following Borgschulte et al. (2022) and Miller et al. (2024), who similarly exploit long-distance smoke

transport as an exogenous pollution source.
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municipality-by-year fixed effects to isolate the within-municipality, day-to-day variation

in smoke intensity. Standard errors are clustered at the municipality level, allowing for

arbitrary spatial correlation in unobservable. The dependent variable, the number of daily

accidents, is count data with many zeros and substantial heteroskedasticity. Ordinary least

squares (OLS) on log-transformed counts would require dropping zero observations and

would be inconsistent under heteroskedasticity. Instead, I estimate equation (1) using the

Poisson Pseudo-Maximum Likelihood (PPML) estimator, which provides consistent estimates

of semi-elasticities in nonlinear count models without requiring equality of the mean and

variance (Wooldridge, 2009). PPML also accommodates heteroskedasticity and allows the

inclusion of high-dimensional fixed effects via iterative algorithms, making it well suited to

this setting.

To test the theoretical prediction that the net effect of smoke depends on the balance

between cognitive impairment and avoidance behavior, I estimate equation (1) with separate

indicators for light, medium and heavy smoke:

Accidentsidmy = exp (α + βL LightSmokeidmy + βM MediumSmokeidmy + βH HeavySmokeidmy

+ γ′Xidmy + λim + δiy) ϵidmy. (3)

Comparing βL, βM , and βH allows me to assess whether there are non-linear effects in

the impact of smoke on traffic accidents.

Throughout, the coefficients are interpreted as percentage changes relative to smoke-free

days within the same municipality and month. For example, βL = 0.02 implies that light

smoke increases daily accidents by approximately 2%, holding local conditions constant.

Because wildfire smoke is transitory and spatially diffuse, this approach captures short-run

behavioral and cognitive responses rather than long-term adaptation or infrastructure effects.
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5 Results

This section reports estimates of equation (1). My preferred estimator is Poisson Pseudo–Maximum

Likelihood (PPML); I also report OLS as a linear benchmark. Unless otherwise noted, stan-

dard errors are clustered at the municipality level.

Table 2 presents the main effect of wildfire smoke on traffic accidents. Column (1) shows

that, relative to smoke-free days within the same municipality–month, days with any smoke

are associated with a (e0.013 − 1)× 100 ≈ 1.3% increase in expected daily accidents (PPML).

Column (2) reports the OLS semi-elasticity of 2.5%. Because PPML with high-dimensional

fixed effects automatically drops separated observations (Correia et al., 2020), Column (3)

re-estimates OLS on the PPML sample for comparability; the implied effect is 3.4%. All

approaches point to a positive effect of smoke presence on accidents. Based on the PPML

estimate, the cumulative effect during the wildfire season (May–October) corresponds to

approximately 2,477 additional accidents.

Table 2: Effect of Smoke Exposure on Traffic Accidents

PPML OLS OLS (PPML Sample)

Smoke (Any) 0.013** 0.025* 0.034*

(0.005) (0.014) (0.019)

Observations 302,946 413,448 302,946
R2/Pseudo R2 0.8483 0.9310 0.9305
Month×Municipality FE Yes Yes Yes
Year×Municipality FE Yes Yes Yes
Controls Yes Yes Yes
Mean 2.98 2.19 2.98

Notes: Municipality-level SEs in parentheses. PPML drops separated observations
by construction; Column (3) re-estimates OLS on the PPML sample. *p < 0.10, **

p < 0.05, ***p < 0.01.
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5.1 Heterogeneous Effects

I next examine heterogeneity along five dimensions motivated by the conceptual framework:

smoke intensity, urban vs. rural, weekday vs. weekend, collision severity, and pre- vs. post-

COVID. Throughout, I estimate PPML analogues of equation (1); OLS versions are reported

in the appendix 1 and yield consistent qualitative conclusions.

By smoke intensity. Smoke exposure could plausibly affect accidents in two opposing

ways: it may impair cognition and attention, increasing accident risk, but it can also trigger

avoidance behavior, reducing travel when conditions are visibly poor. Whether the net effect

is positive, negative, or nonlinear is therefore an empirical question. To test for this, I replace

the single smoke indicator in equation (1) with separate indicators for light, medium, and

heavy smoke intensity: LightSmokeidmy, MediumSmokeidmy, and HeavySmokeidmy.

The results, presented in Table 3, reveal clear nonlinearity. Light and medium smoke

are associated with increases of approximately 2.3% and 4.2% in daily accident counts,

respectively, while heavy smoke reduces accidents by about 3.6%. This pattern is consistent

with the idea that moderate smoke impairs cognitive performance, while more intense,

perceptible smoke prompts drivers to avoid travel or adopt more cautious behavior.

Urban vs. rural. Table 4 estimates separate models for urban and rural municipalities.

Light smoke raises accidents in urban areas but is insignificant in rural areas, consistent with

higher baseline traffic density amplifying cognitive effects. Medium smoke is insignificant in

urban areas but positive in rural areas, plausibly reflecting less scope for avoidance in rural

labor markets. Heavy smoke reduces accidents in both settings, consistent with avoidance.

Weekday vs. weekend. If avoidance is easier on weekends, the cognition channel should

be more visible on weekdays. Table 5 confirms that light smoke increases weekday accidents

but not weekend accidents; heavy smoke reduces accidents on both.
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Table 3: Effect of Smoke Exposure on Traffic Accidents (by Intensity)

PPML OLS OLS (PPML Sample)

Light Smoke 0.023*** 0.047** 0.065**

(0.007) (0.023) (0.032)
Medium Smoke 0.042** 0.126** 0.142**

(0.018) (0.060) (0.069)
Heavy Smoke -0.036*** -0.076*** -0.106***

(0.009) (0.029) (0.041)

Observations 302,946 413,448 302,946
R2/Pseudo-R2 0.840 0.930 0.931
Month×Municipality FE Yes Yes Yes
Year×Municipality FE Yes Yes Yes
Controls Yes Yes Yes
Mean 2.98 2.99 2.98

Notes: PPML estimates of equation (1) with smoke intensity dum-
mies LightSmokeidmy, MediumSmokeidmy, HeavySmokeidmy; municipality-

clustered SEs. *p < 0.10, **p < 0.05, ***p < 0.01.

Table 4: Effect of Smoke Exposure on Traffic Accidents: Urban vs. Rural

Urban Rural

Light Smoke 0.026*** 0.013
(0.009) (0.010)

Medium Smoke 0.020 0.074*

(0.015) (0.039)
Heavy Smoke -0.025*** -0.079***

(0.009) (0.022)

Observations 202,297 100,649
Pseudo R2 0.911 0.338
Month×Municipality FE Yes Yes
Year×Municipality FE Yes Yes
Controls Yes Yes
Mean 3.46 2.01

Notes: I present separate estimates for urban and
rural municipalities based on equation 1. The
urban sample includes cities, towns, villages, and
summer villages. Standard errors are clustered at
the municipality level. Significance level: *

p < 0.10, **p < 0.05, ***p < 0.01.
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Table 5: Effect of Smoke Exposure on Traffic Accidents: Weekday vs. Weekend

Weekday Weekend

Light Smoke 0.020*** -0.010
(0.007) (0.010)

Medium Smoke 0.005 0.062
(0.023) (0.038)

Heavy Smoke -0.039*** -0.042**

(0.009) (0.015)

Observations 204,255 71,330
Pseudo R2 0.857 0.817
Month×Municipality FE Yes Yes
Year×Municipality FE Yes Yes
Controls Yes Yes
Mean 3.35 3.05

Notes: Standard errors are clustered at the
municipality level. Significance levels: *p < 0.10, **

p < 0.05, ***p < 0.01.

By collision severity. Table 6 presents the estimated effects of wildfire smoke exposure

by accident severity. The point estimates for light and medium smoke are positive across

all categories — fatal, injury, and property-damage-only accidents — although statistical

significance varies. Light smoke significantly increases property-damage-only accidents, while

medium smoke significantly increases both fatal and property-damage accidents. The larger

point estimates for medium relative to light smoke, particularly for fatalities and property

damage, are consistent with increasing cognitive impairment as exposure intensifies. In

contrast, heavy smoke significantly reduces accidents across all severity categories, including

fatalities, injuries, and property damage, consistent with avoidance behavior when smoke is

highly visible and salient.

Pre- vs. post-COVID. Table 7 estimates separate models for periods before and after

the COVID-19 shock to commuting patterns. The ability and acceptance to work from home

increased substantially during the pandemic. Light and medium smoke increase accidents

in the pre-COVID period but have no significant effects post-COVID, while heavy smoke
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Table 6: Effect of Smoke Exposure on Traffic Accidents by Collision Severity

Fatal Injury Property Damage

Light smoke 0.0596 0.0472*** 0.0193***

(0.1004) (0.0174) (0.0070)
Medium smoke 0.5628** 0.0321 0.0403**

(0.2655) (0.0569) (0.0176)
Heavy smoke -0.0079 -0.0443** -0.0347***

(0.1523) (0.0213) (0.0095)

Observations 57,009 200,447 299,447
Pseudo R2 0.1003 0.5754 0.8441
Month×Municipality FE Yes Yes Yes
Year×Municipality FE Yes Yes Yes
Controls Yes Yes Yes
Mean 0.048 0.54 2.65

Notes: The number of observations differs across columns because acci-
dent incidents vary in severity, especially since only a few accidents result
in fatalities. Additionally, PPML also automatically drops separated
observations within each category. Standard errors are clustered at the
municipality level. Significance levels: *p < 0.10, **p < 0.05, ***p < 0.01.

reduces accidents — especially after COVID — consistent with greater scope for avoidance

when remote work is more prevalent.

6 Mechanisms

The heterogeneity analysis provides suggestive evidence that light and medium smoke increase

accidents through impaired cognitive function, whereas heavy smoke reduces accidents through

avoidance behavior. This section explores those channels more directly.

First, I examine how wildfire smoke affects traffic volumes. Traffic flow data, available only

for Calgary during 2022–2024, record the daily number of vehicles captured by traffic cameras

across major intersections. I regress these traffic counts on indicators for wildfire smoke

exposure, controlling for calendar month and year fixed effects. As before, identification

relies on within-city, day-to-day variation in smoke intensity across the wildfire season. The

results, reported in Table 8, show no statistically significant change in vehicle counts on days
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Table 7: Effect of Smoke Exposure on Traffic Accidents: Pre- vs. Post-COVID

Pre-COVID Post-COVID

Light Smoke 0.029*** -0.018
(0.007) (0.014)

Medium Smoke 0.064*** 0.011
(0.016) (0.031)

Heavy Smoke -0.024 -0.081***

(0.014) (0.009)

Observations 166,126 120,705
Pseudo R2 0.856 0.827
Month×Municipality FE Yes Yes
Year×Municipality FE Yes Yes
Controls Yes Yes
Mean 3.48 2.70

Notes:Standard errors are clustered at the municipality level.
Significance levels: *p < 0.10, **p < 0.05, ***p < 0.01.

with any smoke. When disaggregated by intensity, heavy smoke significantly reduces traffic

volumes, consistent with avoidance behavior and with the corresponding decline in accidents

under severe smoke conditions. In contrast, light smoke has no detectable effect, and medium

smoke — if anything — increases traffic volumes. This pattern suggests that individuals do

not perceive light or moderate smoke as hazardous and therefore do not alter their travel

behavior, a finding that is particularly salient given the sample is from post–COVID-19,

when remote work and flexible commuting could have facilitated avoidance if the risk were

perceived.

Visibility might be one potential channel through which wildfire smoke exposure may

affect accidents by directly reducing visibility. To investigate this further, I estimate equation

3 with visibility (in km) as the outcome variable rather than accidents. Table 9 shows the

results from this estimation. Smoke significantly reduces visibility, with heavy smoke lowering

it by nearly 36%. Although smoke reduces visibility, the magnitude of this reduction is likely

too small to affect driving conditions. The average visibility is 23.08 km, even under heavy

smoke, visibility declines by an average of 8.8 km, leaving an average visibility of about 15
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km, which remains sufficient for safe driving. Because smoke and visibility are not perfectly

correlated, I can restrict the sample to days with at least 25 km visibility and re-estimate the

main model. Table 10 shows results that are consistent with the baseline estimates. These

findings indicate that while wildfire smoke reduces visibility, the reduction is likely insufficient

to explain the increase in accidents. Therefore, visibility is not a meaningful channel through

which smoke influences traffic accidents.

Table 8: Effect of Smoke Exposure on Traffic Flow

Any Smoke Smoke Intensity

Any Smoke -11.085
(6.958)

Light Smoke -8.242
(7.018)

Medium Smoke 82.659***

(24.324)

Heavy Smoke -55.567***

(12.198)

Observations 83,105 83,105
R-squared (within) 0.0218 0.0222
Month FE Yes Yes
Year FE Yes Yes
Controls Yes Yes
Mean 1,636.3 1,636.3

Notes: The dependent variable is the number of vehicles
recorded by traffic cameras in Calgary. Observations
are at the camera–day level. Standard errors are robust
to heteroskedasticity. Significance levels: *p < 0.10, **

p < 0.05, ***p < 0.01.

To further explore the potential effects of visibility on accidents, I consider time of day. I

divide each day into six four-hour intervals, from 7:00 a.m.–10:59 a.m. through 3:00 a.m.–6:59

a.m., and estimate the main model separately for each period. Table 11 presents the results.

If reduced visibility were the primary channel, accident rates should increase at night when

baseline visibility is lowest. Instead, the opposite pattern emerges: accidents rise under

light smoke during daytime and rush-hour periods—when visibility is naturally high—and
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disappear at night. This finding rules out visibility as the dominant mechanism. Rather,

the daytime increase in accidents aligns with cognitive impairment from smoke exposure,

while the decline in accidents under heavy smoke reflects avoidance behavior, as individuals

delay or forego travel when conditions are visibly poor. Together, the evidence indicates that

wildfire smoke affects accidents through two distinct mechanisms: impaired cognition, which

increases accident risk when smoke is not salient, and behavioral avoidance, which reduces

accidents when the hazard is perceptible.

Table 9: Effect of Smoke Exposure on Visi-
bility (km)

Light Smoke -1.584***

(0.117)
Medium Smoke -4.072***

(0.333)
Heavy Smoke -8.800***

(0.371)

Observations 359,209
R2 0.6192
Month×Municipality FE Yes
Year×Municipality FE Yes
Controls Yes
Mean 23.08

Notes: I regress visibility on smoke
intensity. Standard errors clustered at
the municipality level. Significance: *

p < 0.10, **p < 0.05, ***p < 0.01.

Table 10: Effect of Smoke Exposure on Traf-
fic Accidents on High-Visibility (>25 km)
Days

PPML

Light Smoke 0.042***

(0.0128)

Medium Smoke 0.061*

(0.0375)

Heavy Smoke -0.047**

(0.0222)

Observations 116,432
Pseudo R2 0.860
Month×Municipality FE Yes
Year×Municipality FE Yes
Controls Yes
Mean 3.13

Notes: I regress visibility on smoke in-
tensity using only high-visibility (>25
km) days. Standard errors clustered
at the municipality level. Significance:
*p < 0.10, **p < 0.05, ***p < 0.01.
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Table 11: Effect of Smoke Exposure on Traffic Accidents by Time of Day

7-11 11-15 15 -19 19-23 23 -3 3 - 7

Light Smoke 0.0198* 0.0301** 0.0293*** 0.0312** -0.0099 -0.0393
(0.0118) (0.0125) (0.0069) (0.0128) (0.0211) (0.0266)

Medium Smoke 0.0705 0.0326 0.0531 0.0741 -0.0816 0.1058
(0.0438) (0.0261) (0.0325) (0.0496) (0.0883) (0.0688)

Heavy Smoke -0.0781*** -0.0267* -0.0143 -0.0443 -0.0183 -0.0833**

(0.0200) (0.0144) (0.0137) (0.0529) (0.0309) (0.0280)

Observations 223,525 245,209 239,215 214,598 173,589 172,067
Pseudo R2 0.6935 0.7559 0.7871 0.5883 0.4851 0.4208
Month×Municipality FE Yes Yes Yes Yes Yes Yes
Year×Municipality Yes Yes Yes Yes Yes Yes

Controls Yes Yes Yes Yes Yes Yes
Mean 0.66 0.92 1.13 0.60 0.26 0.25

Notes: This table presents separate estimates of the main model for different times of the
day. The number of observations differs across columns because accident incidents vary
by time of day, and PPML also automatically drops separated observations within each
category. Standard errors are clustered in Municipality level. Significance levels: *p < 0.10, **

p < 0.05, ***p < 0.01.

7 Conclusion

Wildfires are becoming a dominant source of global air pollution, and their smoke now reaches

populations far from the fireline. This paper provides evidence that wildfire smoke also affects

an essential yet understudied domain of behavior—road safety. Using municipality–day data

from Alberta combined with satellite-based smoke maps, I show that accident rates rise on

light and medium smoke days but fall on heavy smoke days, revealing a nonlinear relationship

driven by the interaction of cognition and avoidance. Complementary evidence from traffic

counts and visibility measures suggests that smoke impairs performance even when it is not

perceptible enough to alter driving behavior, while severe smoke triggers avoidance and fewer

trips. These results highlight an overlooked welfare cost of wildfire smoke: degraded cognitive

function and decision quality that endanger public safety. As wildfires intensify with climate
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change, policies that communicate the risks of even mild smoke exposure—and encourage

reduced travel during smoky periods—could yield substantial health and safety benefits.
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Appendix 1

Table 12: Effect of Smoke Exposure on Traffic Accidents: Urban vs. Rural

Urban Urban (PPML Sample) Rural Rural Sample

Light Smoke 0.053* 0.083* 0.028 0.028
(0.030) (0.046) (0.021) (0.021)

Medium Smoke 0.059 0.086 0.157* 0.160*

(0.094) (0.136) (0.080) (0.081)
Heavy Smoke -0.057* -0.089* -0.146*** -0.147***

(0.034) (0.053) (0.045) (0.045)

Observations 311,696 202,297 101,752 100,649
R2 0.9362 0.9357 0.4698 0.4680
Month×Municipality FE Yes Yes Yes Yes
Year×Municipality FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes
Mean 2.24 3.46 2.03 2.05

Notes: This table presents the separate estimates for urban and rural municipalities using the OLS
approach and specification in equation (1). Standard errors are clustered at the municipality level.
Urban samples include cities, towns, villages, and summer villages. Significance levels: *p < 0.10, **

p < 0.05, ***p < 0.01.
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Table 13: Effect of Smoke Exposure on Traffic Accidents: Weekday vs. Weekend Samples

Weekday Weekday
(PPML
Sample)

Weekend Weekend
(PPML
Sample)

Light Smoke 0.043** 0.063** -0.019 -0.032

(0.020) (0.029) (0.022) (0.036)

Medium Smoke -0.015 -0.022 0.149 0.159

(0.102) (0.124) (0.099) (0.114)

Heavy Smoke -0.087*** -0.130*** -0.074* -0.128*

(0.031) (0.046) (0.042) (0.073)

Observations 294,999 204,255 118,449 71,330

R2 0.9460 0.9456 0.9429 0.9422

Month×Municipality FE Yes Yes Yes Yes

Year×Municipality FE Yes Yes Yes Yes

Controls Yes Yes Yes Yes

Mean 2.34 3.38 1.88 3.05

Notes: I present separate estimates for weekdays and weekends using OLS approach. Standard errors are clustered
in municipality level. Significance level: *p < 0.10, **p < 0.05, ***p < 0.01.

Table 14: Effect of Smoke Exposure on Traffic Accidents: Pre- vs. Post-COVID

Pre-COVID Pre-COVID
(PPML
Sample)

Post-COVID Post-COVID
(PPML
Sample)

Light Smoke 0.069* 0.099* -0.027 -0.038

(0.038) (0.055) (0.032) (0.047)

Medium Smoke 0.206** 0.259** 0.044 0.025

(0.086) (0.108) (0.100) (0.107)

Heavy Smoke -0.045* -0.070* -0.153** -0.227**

(0.025) (0.038) (0.064) (0.095)

Observations 236,256 166,126 177,192 120,705

R2 0.9323 0.9319 0.9315 0.9310

Month×Municipality FE Yes Yes Yes Yes

Year×Municipality FE Yes Yes Yes Yes

Controls Yes Yes Yes Yes

Mean 2.42 3.44 1.88 2.77

Notes: I present separate estimates for pre- and post-COVID periods using OLS approach. Standard errors are
clustered at the municipality level. Significance level: *p < 0.10, **p < 0.05, ***p < 0.01.
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Table 15: Effect of Smoke Exposure on Traffic Accidents by Collision Severity

Fatal
Fatal

(PPML) Injury

Injury

(PPML)

Property

Damage

Property

Damage

(PPML)

Light Smoke 0.0004 0.0032 0.012* 0.025* 0.034* 0.048*

(0.0007) (0.0050) (0.006) (0.013) (0.018) (0.025)

Medium Smoke 0.0107 0.038* 0.013 0.015 0.102* 0.116*

(0.0067) (0.0221) (0.023) (0.031) (0.058) (0.067)

Heavy Smoke -0.0002 -0.0011 -0.010** -0.024** -0.065** -0.093**

(0.0010) (0.0082) (0.005) (0.011) (0.027) (0.038)

Observations 413,448 57,009 413,448 200,447 413,448 299,447
R2 0.0231 0.0158 0.6882 0.6816 0.9280 0.9276
Within R2 0.0001 0.0003 0.0003 0.0007 0.0009 0.0012
Clusters (Municipalities) 321 117 321 228 321 309
Month×Municipality FE Yes Yes Yes Yes Yes Yes
Year×Municipality FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes
Mean 0.0066 0.0479 0.274 0.565 1.91 2.64

Notes: I present separate estimates by collision severity using an OLS approach. Standard errors are clustered at the municipality level.
Significance level: *p < 0.10, **p < 0.05, ***p < 0.01.
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Appendix 2

Figure 1: Distribution of Accidents

(a) Distribution of daily municipality-level
accidents for the full sample

(b) Distribution of daily municipality-level
accidents, when number of daily accidents
< 100

Figure 2: Association of Smoke and PM2.5

Note: This figure shows the association between PM2.5 and smoke intensity in the City of
Edmonton during the 2022 smoke season (May–October)
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Figure 3: Yearly Number of Smoke Days in Municipalities in Alberta

Note: This figure shows the annual count of smoke days for any intensity across the municipalities
of Alberta over the period 2016 - 2022.
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