
Aboutness, Quantification, and λ-conversion

1 Introduction

There’s a sense in which universal claims are about the entities they quantify over 

(call this A). For example, ‘every proposition is true’ is about all propositions, and 

‘everyone will eventually die’ is about, well, everyone. On the other hand, 

existential claims don’t seem to follow this rule. That is, they’re not always about 

everything they quantify over; they’re only about the things that are true of (call 

this E): thus ‘someone called me today’ is clearly not about everyone—it’s about 

the one(s) who called me today; nor is ‘some sets have two members’ about all sets

—it’s only about sets that have two elements. Add to these a further plausible, and 

in fact widely accepted assumption about the interaction of aboutness and 

negation: if φ is about a, then so is ¬φ (call this N).

These principles altogether imply that existential statements don’t express 

propositions that are identical to the dual propositions expressed by universal 

statements and negation. That is, for example, the proposition that something is 

F isn’t identical to the proposition that not everything is a non-F —at best they 

are materially equivalent. The argument is straightforward: the latter proposition, 

due to N and A is about everything, whereas the former, due to E, isn’t. So they 

don’t share the same properties, hence cannot be the same.

In this paper, I will propose a rigorous treatment of the informal argument 

above, in the rich language of higher-order logic. I will, in particular, argue 

against (i) outright identifying existential claims with their dual universal claims:
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e.g., ∃xtφ = ¬∀xt¬φ, and (ii) defining higher-order existential quantifier in terms

λ-abstraction, universal quantification and negation (i.e., ∃t ∶= λX⟨t⟩.¬∀xt ¬X(x),

where ∃t is construed as higher-order existential quantifier) in the context of

higher-order logic equipped with the principle λ-conversion, also known as β.

2 Interdefinability of the Logical Vocabulary

Identifying dual statements is a move that logicians often take, in general, about

dualities in logic. Examples of this sort are φ ∧ ψ = ¬(¬φ ∨ ¬ψ), φ → ψ = ¬φ ∨ ψ,

and ∃xφ ∶= ¬∀x¬φ, where, say, the operators disjunction and negation, as well as

the universal quantification are taken as primitives, and the rest are defined in

terms of them. Call this reductionism. For the logician, the immediate advantage

reductionism is its convenience: for example, one no more has to worry about

the tedious task of checking a desired feature of formulas for every connective,

which is what they’d have to do if all connectives and operators were introduced

primitively instead of interdefinably. Instead, they can just check if the desired

property holds for formulas made of the smaller selection of connectives and/or

operators, and generalize the results to the interdefined ones. In short: for most

formal purposes not only there’s no drawback in identifying dual statements, but

it makes things much easier.

When it comes to metaphysics, however, reductionism can have significant

impacts on one’s outlook. For instance, according to some natural views about

propositional granularity, two equivalent propositions may well be distinct, so it’s

no longer obvious that, say, ¬(φ→¬ψ) and ¬(¬φ∨¬ψ) express the same proposi-

tions, assuming the connectives used are the actual well-known Boolean ones. So

it’s no longer obvious which one of these, if any, should be construed as φ ∧ ψ.

To decide one over another on an arbitary basis would be to prejudge matters of

granularity. Moreover, such identifications can lead to inconsistencies in certain
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granular theories, such as the theory of immediate ground (Wilhelm 2020); we’ll

get back to this point in §5.

The most neutral option is, then, to take every connective and operator as

a primitive, and propose their desired features in terms of the axioms of a proof

theory that introduces their behavior. Call this position radical primitivism. But

radical primitivism, even though metaphysically promissing, makes life difficult

for practical purposes: e.g., every proof that calls for a simple induction over

the structure of terms would have to go through each and every connective and

operator and check if the desired feature holds.

A third, somewhat smarter option is to take some connectives and operators

as primitives, and interdefine a set of other connectives and operators in terms

of them—as if they were the other actual logical vocabulary—but not necessarily

consider the new vocabulary as the actual, missing logical ones. Call this position

modest primitivism. For example, suppose we take our primitive connectives and

quantifiers to be disjunction (∨), negation (¬) and universal quantifier (∀xφ),

and define some other connectives and quantfiers in terms of these, in the usual

way, but stay neutral regaring whether they actually are the other, know logical

operators. For example, let φ ∧′ ψ ∶= ¬φ ∨ ¬ψ, and call this sunjunction. The

neutralist stays neutral about whether sunjunction is the same as conjunction.

They have the same truth conditions, and for most purposes that’s all we want

from either of them, they well may be different things. In higher-order logic,

neutralism can also be implemented with the help of λ-abstraction. For example,

suppose we take our primitive logical constants to be disjunction (∨), negation

(¬) and higher-order universal quantifier (∀t, for each type t). Now, we can again

define sunjunction, but now with the help of λ-abstraction: ∧′ ∶= λxλy.¬(¬φ∨¬ψ).

Similarly, one could define Et ∶= λX⟨t⟩.¬∀xt ¬X(x), and remain neutral about

whether or not this represents existential quantification.
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3 Aboutness in Higher-Order Logic

Introduction to higher-order logic

To frame the problem of structured propositions with sufficient rigor, allow me to

introduce a simple type theory (STT).

Types provide a way to track the grammatical categories of expressions.

Definition 1 (Types). The set T of types is recursively defined as follows: e ∈ T ,

⟨⟩ ∈ T , and for any types t1, ..., tn, ⟨t1, ..., tn⟩ ∈ T .

Before defining terms of the system, we assume that for any t ∈ T there’s

a denumerably infinite set of variables Vart of type t and a (possibly empty)

set of typed non-logical constants CSTt. For certain types there are also logical

constants to be introduced below. (We will reserve CSTt for the set of all constants

(logical or non-logical) of type t.) We define the sets of all variables and constants

respectively as Var ∶= ⋃t∈TrVart and CST ∶= ⋃t∈TrCSTt.

Treating the logical vocabulary as constants is the prevalent approach in

higher-order logic.1 Here’s the list of our primitive, typed logical constants: im-

plication, →, of type ⟨⟨⟩, ⟨⟩⟩, and for any type t, there is a constant for a (higher-

order) universal quantifier ∀t, of type ⟨⟨t⟩⟩, existential quantifier ∃t, of type ⟨⟨t⟩⟩

and identity =t of type ⟨t, t⟩. After we introduce the set of terms of STT, we will

see how the quantifiers function with the given type, and how other connectives

will be defined in terms of the primitive constants above. Call the language with

the logical constants above L.

Definition 2 (Terms of L). The terms in L are recursively defined as follows:

(i) if x is a variable of type t, then x is a term of type t; (ii) if c is a constant of

type t, then c is a term of type t; (iii) if φ is a terms of type ⟨⟩ and for n ≥ 1, the

variables x1, ..., xn are pairwise distinct, and respectively of types t1, ... , tn, then

1For example, see (Bacon 2018; Bacon 2019; Church 1940; Dorr 2016; Dorr et al. MS; Henkin
1950; Mitchell 1996).
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λxt11 , ..., x
tn
n .φ is a term of type ⟨t1, ..., tn⟩ ; (iv) if τ is a term of type ⟨t1, ..., tn⟩,

where n ≥ 1, and for each i = 1, ..., n, σi is a term of type ti, then τ(σ1, ..., σn) is a

term of type ⟨⟩.

We also have the following set of interdefined connectives and operators:

� ∶= (∀⟨⟩)(λp⟨⟩.p) ¬ ∶= λp⟨⟩.(p→ �) ∨ ∶= λp⟨⟩q⟨⟩.(¬p→ q)

∧ ∶= λp⟨⟩q⟨⟩.¬(p→ ¬q) =t∶= λxtyt.∀⟨t⟩X(X(x)→X(y))

For our purposes, it doesn’t matter if we are reductionist or modest primitivist

about these connectives, although in the end we will get back to this matter. We

call a term of type ⟨⟩ a formula, and when it contains no free variables, a sentence.

We use the letter t with or without subscripts as metavariables for types, lower-

case Greek letters τ, σ, φ,ψ, ... with or without subscripts as metavariables for

general terms, and lower-case or capital English letters x, y, z, p, q,X,Y,Z,P,Q,

with or without subscripts, as metavariables for variables. Also, from now on, by

convention, we write things like φ∨ψ or x = y to indicate the application instances

∨(φ,ψ) or = (x, y), and so on. The notions of free and bound variables of terms,

substitutions of terms for variables, and being free for a variable, are defined as

usual. We show the set of free variables in a term σ by FV (σ). Also the set of

all terms of L is denoted by TERM.

Now, we will propose a proof theory for our language L.

System PH

Axioms:

1. All theorems of propositional logic. PL

2. ⊢ (λxt11 , ..., x
tn
n .φ)(σ1, ..., σn) = [σ1/x1, ..., σn/xn]φ, where the type of σi is ti,

for each i = 1, ..., n. β2

2Although this won’t impact our arguments going forward, it’s worth pointing out that
some people might want to restrict λ-abstraction to non-vacuous cases only, because other-
wise some non-trivial consequences may follow regarding aboutness: for example, by β we have:
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3. ⊢ ∀tF→F (σ), where F is of type ⟨t⟩, and the type of σ is t. UI

4. ⊢ F (σ) → ∃tF , where F is of type ⟨t⟩, and the type of σ is t . EG

5. ⊢ ∀t(λxt. φ→F (x)) → (φ→ ∀tF ), where x ∉ FV (φ) UD

6. ⊢ ∀t(λxt. F (x)→ψ) → (∃tF → ψ), where x ∉ FV (ψ) ED

Rules of Inference:

7. If ⊢ φ and ⊢ φ→ ψ, then ⊢ ψ. MP

8. If ⊢ F (x), then ⊢ ∀t(F ), where x is of type t, and F is a variable of type

⟨t⟩. GEN

Now, consider the language which has all the variables and non-logical con-

stants that L has, except that it doesn’t have the existential quantifier ∃t as a

primitive constant, but as the combinator ∃t ∶= λX⟨t⟩.¬∀xt ¬X(x). Call this lan-

guage L−. Also, leave the term-formation rules as they are. Then the axioms

EG and ED can be derived as the theorems of the rest of the axioms plus the

derivation rules of PH. Call the shrunk proof system PH−.

Theorem 1. ⊢LPH ∃t(F ) ↔ ¬∀t(λxt.¬F (x)), where F is type ⟨t⟩.

Proof.

(λxe.The Sun is shining)(Amir) = The Sun is shining; but the left-side of the identity is presum-
ably a aproposition about Amir, whearas the the right side clearly isn’t (Dorr 2016). This
problem, however, doesn’t seem to arise if we replace β with βE , and leave vacuous cases of ab-
straction intact, because materially equivalent propositions aren’t necessarly about everything:
for example 2+2=5 and The Earth is flat are equivalent, but they’re not about the same things.
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(1) ⊢ ∀t(λxt. F (x)→�) → (∃tF → �) ED

(2) ⊢ ∀t(λxt. ¬F (x)) → ¬∃t(F ) β 1; ¬ ∶= λp⟨⟩.(p→ �)

(3) ⊢ ∃t(F ) → ¬∀t(λxt. ¬F (x)) PL 3

(4) ⊢ F (x) → ∃t(F ). EG

(5) ⊢ ¬∃t(F ) → ¬F (x) PL 4

(6) ⊢ ¬∃t(F ) → (λxt.¬F (x))(x) β 5

(7) ⊢ (λxt.¬F (x))(x) → ∀t(λxt.¬F (x)) GEN

(8) ⊢ ¬∃t(F ) → ∀t(λxt.¬F (x)) PL 6, 7

(9) ⊢ ¬∀t(λxt.¬F (x)) → ∃tF PL 8

(10) ⊢ ∃t(F ) ↔ ¬∀t(λxt.¬F (x)) PL 3, 9

Remark 1. Notice that the proof would still go through if we replace β with

the weaker βE , and add (2) as an axiom for a primitive ¬ of our system. In

particular, in a system where all of the logical vocabulary are given as primitives

with appropriate axiomatization, the result above still holds even with βE in place

of β.

Theorem 2. ⊢L
−

PH− ∃
t(F ) ↔ ¬∀t(λxt.¬F (x)), where F is type ⟨t⟩.

Proof. Straightforward. Notice that the proof would go through even if we replace

β with βE .

Remark 2. Notice that, in either of the theorems above, proving identities of the

two sides of ↔ needs something like an axiom of extensionality for propositions—

∀p⟨⟩∀q⟨⟩(p↔q → p=q)—which we haven’t adopted in our system.

Finally, the following (schematic) lemma will come in handy:

Lemma 1 (LBZ). σ =t τ → ∀X⟨t⟨⟩(X(σ) ↔X(τ)).
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3.1 Aboutness in Higher-order Logic

Now we formalize our principles of aboutness from Introduction. For any terms

φ of type ⟨⟩ and σ of any type t, let A(φ,σ) be understood as ‘φ is about σ’. So,

for any type t, we can take A to be constant of type ⟨⟨⟩, t⟩. Here’s the list of the

informal assumptions from Introduction, expressed in the language of higher-order

logic with the following schemata:

(A) ∀ytA(∀xtφ, y).

(E) ∀yt([y/x]φ↔ A(∃xtφ, y)).

(N) ∀yt(A(φ, y) → A(¬φ, y)).

Of course, one might be able to derive these from a more general account of

(higher-order) aboutness, but here we are not concerned with any such account,

and we just take at face value these as theorems of our minimal theory of about-

ness, which, as argued briefly, seem to conform to our intuitions about the inter-

action of aboutness and quantification.

Notice that since the principles above are schematic in the types t and formulas

φ, we can instantiate them with different types and formulas. In particular, let

t ≡ ⟨⟩. Since provably some propositions are false (otherwise the systems PH and

PH− will both be inconsistent, which they aren’t), the there proposition ∃p⟨⟩p

isn’t about all propositions. As a result we have the following instances of the

rules above:

(A′) ∀q⟨⟩A(∀p⟨⟩¬p, q).

(E′) ¬∀q⟨⟩A(∃p⟨⟩p, q).

(N′) ∀q⟨⟩(A(∀p⟨⟩¬p, q) → A(¬∀p⟨⟩¬p, q)).
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3.2 The Aboutness Argument in Higher-Order Logic

It’s an easy task to see that identifications of the form ∃xtφ = ¬∀xt¬φ, where ∃xtφ

is construed as existential quantification (which correspond to the first strat-

egy glossed in Section 2) lead to inconsistency with {A′,E′,N′} (hence, with

{A,E,N}), in higher-order logic.3 Suppose LA is the enrichment of L with about-

ness constants A of different types. (Similarly, L−A is just L− with those constants

added.)

Theorem 3. {A,E,N} ⊬L
A

PH �.

Proof. The proof of this theorem needs a kind of model theory that’s beyond the

scope of the paper.

Remark 3. The reason that equivalence statements like ∃xtφ↔ ¬∀xt¬φ (or al-

ternatively, replacing β with βE , in PH−) don’t lead to inconsistency with our

minimal principles of aboutness (Theorem 3) must have to do with this obser-

vation: in general from A(φ, a) and φ → ψ we cannot conclude A(ψ,a). For

example, by A we have it that the proposition ∀p⟨⟩(p = p) is about every propo-

sition, and by UI we have ∀p⟨⟩(p = p) → � = �, but clearly the latter isn’t about

every proposition. This can be introduced as a separate principle, or might follow

from some other, more basic, principles.

Theorem 4. {A′,E′,N′} ⊢L
−A

PH− �.

Proof.

3This can straightforwardly also be proved for weaker logics such as first-order logic, as well.
So in such logics, one would need to take existential statements as primitives, in order to avoid
inconsistency.
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(1) ∀q⟨⟩A(∀p⟨⟩¬p, q) A′

(2) A(∀p⟨⟩¬p, q) UI 1

(3) A(¬∀p⟨⟩¬p, q) N′ 2

(4) ¬∀p⟨⟩¬p = (λX⟨⟨⟩⟩.¬∀p⟨⟩¬X(p))(λr⟨⟩.r) β

(5) A((λX⟨⟨⟩⟩.¬∀p⟨⟩¬X(p))(λr⟨⟩.r), q) LBZ 3, 4

(6) ∀q⟨⟩A((λX⟨⟨⟩⟩.¬∀p⟨⟩¬X(p))(λr⟨⟩.r), q) GEN 5

(7) ∀q⟨⟩A(∃⟨⟩(λr⟨⟩.r), q) ∃t ∶= λX⟨t⟩.¬∀xt ¬X(x)

(8) � E′ 7

As a result, we also have: {A,E,N} ⊢L
−A

PH− �.

4 Conclusion

The main result of this paper, which is to reject reductionism, gainst further

support from the literature on grounding. For example, Wilhelm (2020) has shown

(although, for simpler languages than that of higher-order logic) identifications of

the form φ ∧ ψ = ¬(¬φ∨¬ψ), where the connectives invloved are conjunction and

disjunction, respectively, also lead to inconsistency with the standard principles

of immediate ground. Of course, one way to interpret wilhelm’s results is that

the notion of immediate ground is unitelligible. But I would contend that a more

wholesome interpretation is to reject reductionism, because (i) as was dicsussed

earlier, this leads to prejudgment of matters of granularity, and (ii) considerations

that underly identifications of the form φ∧ψ = ¬(¬φ∨¬ψ) are similar to the ones

of the form the form ∃xtφ = ¬∀xt¬φ; so if we go against the latter, it would

sound arbitrary not to do to the same for the former. That is, either of radical

or modest primitivism seem more metaphysically promissing than reductionism,

although the modest primitivist, much like the reductionist, has the disadvantage

of having to awkwardly choose the ‘elite’ collection of primitive operators, as it’s

not clear on what basis a select group of operators be chosen over another.
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In higher-order languages where λ-abstraction is available the matter becomes

more delicate, as one still could be reductionist to some extent, and there can be

some advantages in that. In fact, one can pinpoint a specific principle in PH or

PH− that contributed to the inconsistency (Theorem 4), namely β: reductionism

will be compatible with our minimal principles of aboutness if β is dropped.

Notice also that, in such languages Wilhelm (2020)’s inconsistency result can be

understaood as, for instance, defining conjunction as ∧ ∶= λp⟨⟩q⟨⟩.¬(¬p∨¬q), where

∨ is disjunction; such identifications are inconsistent with the logic of immediate

ground only if β holds.

Furthermore, recently Fritz (2020) has suggested to resolve a famous puzzle

of mediate ground due to Fine (2010) and Krämer (2013) by replacing the first-

order (or second-order) existential quantifiers with the higher-order existential

quantification ∃t. Fritz, in particular, shows that the puzzle is misguided if one

rejects β (as well as another principle about the interaction of ground and λ-

abstraction), and in the rest of his paper attempts to motivate such a move.

My argument provides an independent reason for doing so: if we take ∃t to just

be λX⟨t⟩.¬∀xt ¬X(x), then ∃t cannot be the existential quantifier if β holds, so

construing existence in the original puzzle as the higher-order operator ∃t won’t

be appropriate, under the rein of β, to begin with. Yet another ground-frinedly

support for dropping β comes from a puzzle about the grounds of λ-abstractions,

due to Fine (2012). As Dorr (2016) mentions, the puzzle won’t go through if β is

dropped.

Therefore, as long as one theorizes about metaphysical matters in the expres-

sive language of higher-order logic, a rival to to radical primitivism and neutralism

comes to the surface: reductionism without β, or β-free reductionism. The choice

between these alternatives isn’t obvious anymore: the latter is in particular more

friendly to the notion of ground, contributing to solving two of its puzzles and

securing it coherence.
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